Journal of Basic and Applied Engineering Research

Print ISSN: 2350-0077; Online ISSN: 2350-0255; VVolume 2, Number 10; April-June, 2015 pp. 850-853

© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

An Approach for Data Flow Testing Iin
Object-Oriented Programming through
Particle Swarm Optimization

Sonam Bhati' and Pradeep Tomar?

L2Dept. Computer Science and Engg. School of ICT Gautam Buddha University, Greater Noida, Uttar Pradesh, India
E-mail: *sonam2709@gmail.com, *parry.tomar@gmail.com

Abstract—Software Testing plays a crucial role in the software
development lifecycle as it is used to improve the quality and
increase the reliability of software. Software testing successfulness is
always determined on the basis of generated test cases and their
prioritization. So, it consumes more effort, time and cost. Today, a
numerous soft computing based approaches are available for better
accuracy in testing. The aim of this paper is to provide review of
some of the recent work that has been done in the area of software
testing by using computational techniques. Based on those work, This
paper proposes an approach for data flow testing using PSO. This
paper discusses how PSO algorithm is used for optimizing in the
issue of data flow testing. It will use a simple algorithm of PSO
(Particle Swarm Optimization) inspired by social metaphors of
behaviour which uses the concepts for optimizing the nonlinear
function of particle swarm theory for data flow testing which
guarantees full path coverage.

Keywords: Data Flow Testing, Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), Control Flow Graph (CFG),
Dominance Tree.

1. INTRODUCTION

Software quality can be measured through product reliability
and customer’s satisfaction. An exhaustive testing ensures the
quality of the software. Software testing is generally divided
into white box testing and black box testing. White box testing
is also known as structural testing as the structure or logic is
considered in this testing. Testing mainly comprises of static
testing and dynamic testing. Static testing does not need any
tool as the testing of program is done without executing the
program and it is done through verification and dynamic
testing is performed with the execution of code and it is a part
of validation. In this testing, test data is given to the system in
the form of input and results are checked against the expected
output while executing the software as the structure or logic is
not considered in this testing. On the other hand, white box
testing is another essential technique in dynamic testing. It is
also known as structural testing as whole structure design and
code is tested and its aim is to test the internal parts

and uncover bugs as many as possible in the logic of the
program.

In Software Development Process, testing is costly and time

consuming phase. There are some of essential task in software

testing to create the test data to satisfy a given test-coverage

criterion. This process is known as test-data generation. Also,

there are many crucial activities associated with software

testing such as:

e To cover a certain testing criterion, find the path cover.

e To satisfy the path cover, generate the test data.

e Test execution by using the test data and the software
under test.

o Evaluation of test results.

Today, for a large project there are large numbers of test cases
required. So it becomes difficult for tester to test large and
complex programs. Therefore, there is need to reduce the
testing set to generate optimal test data which further reduces
the time and cost involved in testing. This work focuses on the
computational technique which is guided by data flow
dependencies in the program to search for test data to fulfil
data flow selection criterion. This paper presents an algorithm
of PSO technique to generate test data which gives a strong
level of software coverage. In this paper the emphasis is given
on PSO algorithm which will be used for data flow testing.

The rest of the paper is organized as follows. Section 2 gives
some basic concepts and definitions and survey of various
research papers related to dynamic testing Section 3 describes
about data-flow analysis technique. Section 4 shows a PSO
algorithm which is used for optimizing data-flow testing in the
proposed approach. Section 5 introduces conclusion and future
work.

2. BACKGROUND

Here, this paper discusses about some basic concepts that are
used throughout this work.

An Approach for Data Flow Testing in Object-Oriented Programming through Particle Swarm Optimization 851

2.1. Control Flow Graph

The CFG of a program can be represented by a directed graph
G = (V, E) with a set of nodes (V) and a set of edges (E).Each
node represents a group of consecutive statements, which
together constitute a basic block. The edges of the graph are
then possible transfers of control flow between the nodes.

2.2. Dominance Tree

For G = (V, E), a directed graph with two distinguished nodes
n0 and nk, A node n dominates a node m, if every path P from
the entry node n0 to m contains n. A dominator tree DT(G) =
(V, E) is a directed graph in which one distinguished node n0,
called the root, is the head of no edge; every node n except the
root nO is a head of just one edge and there exists a (unique)
path (dominance path dom (n)) from the root n0 to each node
n [25]. Fig. . 2 gives the dominator tree of program 1.

Enter Program:

using System;

Tamespace ConsoleApplication_mukiple Ex
* l}:lass multipleEx
* ?ta‘tic woid Mainistring[] args)
b a ob= new abcil);

Fig. 1: Program 1

DOM Def e / P-Use.

PSOCOM

3
inta DEU_PATH

. :h__________s.______,,.-—-ﬂ‘%;.._.

e / \ % .
€ asinbParse] Consele DEF _Nede buintParsa(Console DEF_Noda

Readune (1 H

Fig. 2: Dominance Tree

As the present market is highly competitive, it is a pressing
need of software organizations to provide good quality
software products to the customer within the estimated budget,
and hence a strong level of testing coverage technique is
essential. Recently, there are some novel search-based
optimizations techniques have been developed such as Ant
Colony Optimization (ACO), Particle Swarm Optimization
(PSO), Bees Colony Optimization, and Artificial Immune
System (AIS) which are used in optimizing the testing. An
ACO algorithm is a probabilistic technique for solving
computational problems which can be used to find “good”

paths through the graph. It depends on the behaviour of ants in
finding paths from their colony to food. Although, this
algorithm has been already proposed in the issue of software
data-flow testing [1].

Ahmed S. Ghiduk et.al. [1] has proposed the ACO algorithms
in the issue of software data-flow testing and an ant colony
optimization based approach for generating set of optimal
paths to cover all definition-use associations (du-pairs) in the
program under test. The ant colony algorithms has been
adopted to search the CFG and a model built on the program
input domain in order to get the path cover and the test data
that satisfies the selected path. Fig 1[1] provides a block
diagram of the technique used in this paper. They have also
used two ant colony algorithms for using with data flow
testing .One algorithm generates set of paths for covering all
def-use pairs in the software under test (SUT) and the other
algorithm finds set of test data to satisfy this set of paths.

Input Domains
Testing Criterion (C) Inputs 5 | Test data searching model
»

Classify and Reformat
Software under test (SUT)|

Module

g

Path Cover
. Generation Module

Control Flow Graph

Akl —
Entities to be coverad

[} l e Set of Pajhs (P)
Outputs Inputs | Test data searching model
g | Test-Data

Generation Module

Fig. 3: Block Diagram of Data Flow Testing Technique

D. Jeya Mala et.al. [2] has proposed a new non-pheromone-
based test suite optimization approach inspired by the
behavior of biological bees based on ABC which is motivated
by the intelligent behavior of honey bees. In their approach,
the sites are the nodes in the Software under Test (SUT), the
artificial bees modify the test cases with time and the bee’s
aim is to discover the places of nodes with higher coverage
and finally the one with the highest usage by the given test
case. Also, they focused on investigating whether this new
approach outperforms existing test optimization approach
based on Genetic Algorithms (GA) in the task of software test
optimization.

B. Holldobler and E. O. Wilson [3] proposed an ant colony
optimization technique which is a set of instructions based on
search algorithms of artificial intelligence for optimal
solutions; here the iconic member is ANT System. Ants are
blind and small in size and still are able to find the shortest
route to their food source with the use of antennas and
pheromone liquid to be in touch with each other. ACO
inspired from the behavior of live ants, are capable of
synchronization with searching solutions for local problem by
maintaining array list to maintaining previous information
gathered by each ant.

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

852

Sonam Bhati and Pradeep Tomar

P.R Srivastava et.al. [2] presents an algorithm by applying an
ant colony optimization technique, for generation of optimal
and minimal test sequences for behavior specification of
software and they have also used approach to generate test
sequence in order to obtain the complete software coverage.
There have also been discussed the comparison between two
meta- heuristic techniques (Genetic Algorithm and Ant
Colony optimization) for transition based testing. In their
paper, they demonstrate the generation of the optimal test
sequence for the state -transition based software testing. It also
describes the standard method of state transition based testing
and its coverage level but the existing method using GA does
not provide full coverage for software.

R.Lefticaru and F.Ipate [5] devised a Genetic Algorithm based
on test data generation technique. They have used UML state
diagram for test data generation in order to generate test data
before coding, In their work, three major steps were involved
in testing such as generating set of test inputs, execution of
those inputs on the program under tests, and then checking
whether the test executions reveal faults.

3. DATA FLOW ANALYSIS TECHNIQUE

In this technique each variable is classified as either a
definition occurrence or a use occurrence. A definition
occurrence of a variable is where a value is associated with the
variable. A use occurrence of a variable is where the value of
the variable is referred. Each use occurrence is further
classified as a computational use (c-use) or a predicate use (p-
use). If the value of the variable is used to decide whether a
predicate is true for selecting execution paths, the occurrence
is called a predicate use. Otherwise, the occurrence is called a
computational use. Their criteria require that test data to be
included which cause the traversal of sub-paths from a
variable definition to either some or all of the p-uses, c-uses,
or their combination.

Total no of faults m the program

Reduced this gap

detected by

using technique

np ol fa

Random
Testing

Data Flow
Testing

Control Flow
based Testmg

New testing
technique

Fig. 4: Comparison of Testing Techniques

However, data-flow testing is important because it expanded
the concept of control-flow testing criteria and focused on how
a variable is defined and used in the program, which could
lead to more efficient and targeted test suites. The results of

using ant colony optimization algorithms in software testing
which is obtained so far are preliminary and none of the
reported results directly addresses the problem of test-data
generation or path-cover finding for data-flow based software
testing but the testing with PSO can be made more effective.
This paper aims at proposing an approach in which PSO
algorithm is applied in software data-flow testing. This
technique is based on generating set of optimal paths to cover
all definition-use associations (def-use or du-pairs) in the
program under test. Fig. [4] shows the comparison of various
testing techniques.

4. PROPOSED APPROACH

In this paper, it shows a simple algorithm of PSO (Particle
Swarm Optimization) developed by Kennedy and Eberhart
inspired by social metaphors of behavior which uses the
concepts for optimizing the nonlinear function of particle
swarm theory. This approach is based on generating set of
optimal paths to cover all definition-use associations (du-
pairs) in the program under test. PSO is initialized with a
group of random particles and each individual in PSO is
assigned with a randomized velocity according to its own and
its companions “flying experiences” and the individuals called
particles, are then flown through hyperspace. It has memory,
so knowledge of good solutions is retained by all particles.
Each particle is updating by two following best values at each
iterations. The first one is the best solution it has achieved so
far, this value is called pbest. Another best value that is
tracked by particle swarm optimizer is a best value obtained so
far by any particle in the population. PSO can perform much
better in achieving more def-use coverage as compared to
other existing search based optimization techniques like ACO,
GA etc as it has the advantage of memory so it can keep
information of good solutions of all particles. The algorithm of
PSO consists of these steps given below:

1. Initiate Swarm.

2. Repeat

3. For p=1 to number of particles do

4. Evaluate (p)

5. Update past experience (P)

6. Update neighbourhood best (p, k)

7. For d=1 to number of dimensions do
8. Move (p, d)

9. End for

10. End for

11. until criterion.

The continuous PSO version uses a real-valued

multidimensional space as belief space, and evolves the
position of each particle in that space using the following
equations:

Vit =weef b ot (5l - 3l) +a - o, -)

xgt? w44}

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

An Approach for Data Flow Testing in Object-Oriented Programming through Particle Swarm Optimization 853

—_—
i PSO Initialization)

h J
» For each particle

¥

Update v = Next Particle
|) -
+ A IR
o If fix)<t{gBest)
eBesiox
Y
¥ BT
Evaluate f(x) || If f(x) -‘I"(pB..es,l)
i pBest=x
1 D i
Wﬂ'h Satisfy
. Termination
Iteration L
Criterion
v

h 4

¢ @ luti . ™y
L Solution is gBest P,

Fig. 5: Flow Graph

5. CONCLUSION AND FUTURE WORK

This paper has reviewed various research papers based on
dynamic testing and has found that most of the works
concentrates on the coverage but none of them told about
which technique is better suited for full coverage.
Evolutionary structural testing is an approach used to generate
test cases that uses GA, ACO or other search based
optimization which is guided by data flow dependencies in the
program to cover the def-use association. Since cost and
coverage are two important factors in case of testing. This
paper has proposed a process for data flow testing using PSO
as it is found that by using PSO algorithm, performance of
testing can be improved as well as testing can be done more
effectively. In Future work, the PSO algorithm will be
implemented in performing data flow testing to provide an
efficient path with maximum code coverage and minimum
cost. Furthermore, the results can be compared with other
meta-heuristic techniques such as PSO and ACO etc.

6. ACKNOWLEDGEMENT

This research paper is made possible through the help and
support from everyone, including: parents, teachers, family
and friends. Especially, please allow me to dedicate my
acknowledgment of gratitude toward the following significant
advisors and contributors:

First and foremost, |1 would like to thank Dr. Pradeep Tomar
for his most support and encouragement. He kindly read my
paper and offered invaluable detailed advices on grammar,
organization and the theme of the paper. Finally, I sincerely
thank to my parents, family, and friends, who provide the
advice and financial support. The product of this research
paper would not be possible without all of them.

REFERENCES

[1] Ahmed S. Ghiduk” A New Software Data-Flow Testing
Approach via Ant Colony Algorithms” Universal Journal of
Computer Science and Engineering Technology 1 (1), 64-72,
Oct. 2010. © 2010 Uni CSE, ISSN: 2219-2158.

[2] Praveen Ranjan Srivastava and KmBaby ” Automated Software
Testing Using Meta-heuristic Technique Based on An Ant
Colony Optimization” IEEE Transactions on Software
Engineering, vol. 3, no. 4, 266-278, 1977.

[3] D .Jeya Mala, V. Mohan ” ABC Tester -Artificial Bee Colony
Based Software Test Suite Optimization Approach.”Proc. of 7th
International Conference on Hybrid Intelligent Systems
(HI1S*07), Sept. 2007, pp. 84-89. IEEE Press.

[4] K. Li, Z. Zhang and W. Liu “Automatic Test Data Generation
Based On Ant Colony Optimization” Proc. of Fifth
International Conference on Natural Computation 2009, pp.
216-219. IEEE Press .

[5] P.R. Srivastava”An Approach of Optimal Path Generation using
Ant Colony Optimization” Proc. of TENCON 2009, pp.1-6.
IEEE Press.

[6] M. Dorigo and C. Blum “Ant colony optimization theory: A
survey” Theoretical Computer Science, 344(2-3), pp. 243-278,
2005.

[71 Anu Sharma, Arpita Jadhav, Praveen Ranjan Srivastava and
Renu Goyal "Test Cost Optimization Using Tabu Search”,
Software Engineering & Applications, 2010, 3: 477-486.

[8] Liu X.B., Cai Z. X., “Artificial Bee Colony Programming Made
Faster”, Fifth International Conference on Natural Computation
(ICNC), August, 2009, Vol. 4, pp. 154-158, 14-16.

[9]1 B. Holldobler and E. O. Wilson, “The Ants, Berlin: “Springer-
Verlag, 1990.

[10] R. Lefticaru and F. Ipate, “Automatic State-based test generation
Using genetic algorithms,” in Proc. Ninth International
Symposium on Symbolic and Numeric Algorithms 2007), 2007,
pp.188-195

[11] R. C. Eberhart and J. Kennedy, “A New Optimizer using
Particle Swarm Theory”, 6th International Symposium on Micro
machine Human Science, pp. 39-43, 1995.

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

